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We investigate disordered one- and two-dimensional Heisenberg spin lattices across the transition from
integrability to quantum chaos from both statistical many-body and quantum-information perspectives. Special
emphasis is devoted to quantitatively exploring the interplay between eigenvector statistics, delocalization, and
entanglement in the presence of nontrivial symmetries. The implication of the basis dependence of state
delocalization indicators �such as the number of principal components� is addressed, and a measure of relative
delocalization is proposed in order to robustly characterize the onset of chaos in the presence of disorder. Both
standard multipartite and generalized entanglement are investigated in a wide parameter regime by using a
family of spin- and fermion-purity measures, their dependence on delocalization and on energy spectrum
statistics being examined. A distinctive correlation between entanglement, delocalization, and integrability is
uncovered, which may be generic to systems described by the two-body random ensemble and may point to a
new diagnostic tool for quantum chaos. Analytical estimates for typical entanglement of random pure states
restricted to a proper subspace of the full Hilbert space are also established and compared with random matrix
theory predictions.
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I. INTRODUCTION

The emergence of nonintegrable behavior in quantum me-
chanics is a fascinating and widespread phenomenon which
is largely responsible for the “complexity” intrinsic to the
physical and mathematical description of interacting many-
body quantum systems. A most striking consequence is the
existence of distinctive quantum-chaotic properties for dy-
namical systems which may lack a clear classical limit. The
characterization of such quantum chaos signatures has a long
history, pioneered by Wigner in his effort to quantitatively
model complex nuclei �1�, and eventually culminating in sta-
tistical approaches to complex quantum systems based on
so-called random matrix theory �RMT� �2–4�.

Recent years have witnessed a renewed interest in quali-
tatively reassessing and quantitatively exploring many-body
quantum complexity and quantum chaos implications in the
light of quantum-information science �QIS� �5,6�. On one
hand, a deeper understanding of quantum chaos and its im-
plications is a prerequisite for identifying potentially harmful
consequences as well as beneficial uses of chaos in
information-processing devices: While the possibility that
disorder may destabilize quantum computation through a
“chaotic melting” �7,8� calls for careful hardware design and
error control, chaotic evolutions tend to naturally generate
effectively random states which are a resource for a variety
of QIS protocols �9�. On the other hand, QIS provides addi-
tional tools for describing complexity of states and evolu-
tions, which are proving useful in a variety of settings at the
interface with condensed-matter and statistical physics. The

notion of entanglement, in particular—as capturing distinc-
tively quantum correlations which admit no local classical
interpretation �10�—plays a central role to this end. Among
the most notable developments to date, entanglement theory
has allowed a considerably deeper understanding of quantum
critical phenomena—appropriate entanglement measures
serving as an “order parameter” for detecting and classifying
quantum phase transitions in matter �11�—and to devise en-
hanced computational methods for both static and time-
dependent properties of quantum lattice systems �12�.

In this context, uncovering the relationship between vari-
ous aspects of complexity in quantum states and evolutions,
quantum chaos, and entanglement is both a natural and fun-
damental challenge, which is spurring significant activity in
the field; see, e.g., �13–23� for representative contributions.
In particular, specific questions to be answered include the
following: What entanglement properties best capture the
structural change occurring in typical many-body eigen-
states across a transition to quantum chaos, and how well do
such properties reflect the complexity of chaotic eigenstates?
To what extent does the amount of entanglement relate to the
amount of underlying state delocalization? Perhaps most im-
portantly, can entanglement theory suggest new signatures of
quantum chaos?

Our goal in this work is to take a step toward answering
some of the above questions, by seeking an in-depth charac-
terization of entanglement properties of the stationary states
�eigenvectors� of nonintegrable as opposed to integrable
many-body Hamiltonians, in relation to the behavior of tra-
ditional complexity indicators related to RMT spectral statis-
tics and delocalization measures. In this respect, our analysis
shares some motivation with earlier studies of entanglement
across a transition to nonintegrability in a class of one-
dimensional Harper Hamiltonians by Lakshminarayan et al.
�24�, and spin-1/2 lattice systems by Santos et al. �25� and
Mejia-Monasterio et al. �26�, where, however, primary em-
phasis is given to pairwise and bipartite entanglement. Only
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recently has genuine multipartite entanglement started to be
addressed, notably in the one-dimensional Ising model with a
tilted magnetic field �21,27�.

Here, we focus on a representative class of disordered
Heisenberg models, which have received limited attention to
date in spite of their prominent role in condensed-matter
physics as well as in exchange-based circuit-model �28–34�
and cluster-state �35� quantum computing architectures. As a
further distinctive feature of our work, the notion of gener-
alized entanglement �GE�, introduced by Barnum et al. in
�36,37�, is exploited to both obtain a unified approach to
standard �qubit-based� multipartite entanglement—quantified
by a family of coarse-grained �spin-�purity measures—and to
construct GE measures directly probing correlations in dif-
ferent �fermionic� operator languages. From this point of
view, the present study further validates the usefulness of GE
for broadly characterizing complexity in quantum systems,
as recently demonstrated in applications to ground-state
quantum phase transitions �38�, chaotic quantum maps �39�,
and efficient solvability of Lie-algebraic models �40�.

The content of the paper is organized as follows. We be-
gin in Sec. II by recalling the essential RMT background,
along with well-established spectral signatures of quantum
chaos and measures of pure-state delocalization. Section III
introduces the relevant class of one- �1D� and two-
dimensional �2D� Heisenberg models, laying out the static
disorder settings under examination �associated with ran-
domness in the one-body energies, the two-body interactions,
or both�, and discussing the symmetries associated with dif-
ferent parameter regimes. A thorough characterization of in-
tegrability properties is obtained in Sec. IV, with the twofold
objective of distinguishing between delocalized-localized re-
gions and chaotic-integrable ones. The implications of the
dependence of delocalization upon the basis choice are elu-
cidated, and a measure of relative delocalization is intro-
duced to gain additional insight into the properties of eigen-
vectors in disorder-induced chaotic regimes. After a brief
account of entanglement and GE measures in Sec. V, we
present in Sec. VI a detailed analysis of entanglement as a
function of disorder strength and energy, as well as delocal-
ization properties. As a main emerging feature, a strong and
persistent correlation between multipartite entanglement and
delocalization is found in nonintegrable regimes, which is
consistent with independent evidence in �27� and may sug-
gest a novel signature of quantum chaos. While most results
are numerical, analytical estimates for multipartite entangle-
ment of random pure states localized to a subspace are ob-
tained in order to compare numerical results with RMT pre-
dictions. Throughout the paper, special care is devoted to
contrast properties which are general to disordered spin-1/2
lattices to those which are specific to the Heisenberg interac-
tion. The paper concludes with a summary and outlook in
Sec. VII, followed by an appendix which collects technical
derivations.

II. SIGNATURES OF QUANTUM CHAOS

It is well established that quantized versions of classically
integrable and fully chaotic systems can be distinguished by

their quantum energy level statistics �1,3,4,41–43�. Of par-
ticular interest is the distribution of energy level spacings,
P�s�, where s is the spacing between neighboring energy
levels after the spectrum has been appropriately unfolded, so
that the density of states is everywhere equal to 1. Integrable
systems typically exhibit a Poisson distribution,

PP�s� = exp�− s�, s � R+, �1�

whereas chaotic systems have an energy level spacing distri-
bution predicted by RMT. Within RMT, an exact description
of a complex physical system is replaced by a statistical de-
scription based on ensembles of random matrices which
share the same fundamental symmetry properties as the
original system Hamiltonian. In particular, for the wide class
of systems exhibiting time reversal invariance, the appropri-
ate ensemble is the so-called Gaussian orthogonal ensemble
�GOE�, whose energy level spacing distribution is closely
approximated by the Wigner-Dyson distribution,

PWD�s� =
�s

2
exp�−

�s2

4
�, s � R+. �2�

The eigenvectors of fully chaotic systems may also be
described statistically using RMT. If the system of interest
obeys time-reversal symmetry, the eigenvector components
tend to follow a Gaussian distribution, resulting from the
invariance of the GOE under arbitrary orthogonal transfor-
mations �41�.

It is important to appreciate that systems such as interact-
ing lattices of spin-1/2 particles have no obvious classical
limit; thus the question of whether or not they may exhibit
chaos must be posed and answered from an entirely
quantum-mechanical perspective. Because the standard de-
fining features of classical chaos �phase-space ergodicity and
exponential divergence of neighboring trajectories� have no
direct meaning for Hamiltonian quantum dynamical systems,
neither does an unambiguously established framework exist
for consistently defining integrability in quantum settings
�44,45�; this issue is not straightforward and is still largely
open. In the present context, we shall use the term “quantum
chaos” in an operational sense, to simply mean the presence
of RMT energy level statistics.

In order to examine the transition from integrability to
chaos, the following picture is employed �26,41,46�. Let H0
be an integrable Hamiltonian, that is, one for which the ei-
genvalues and eigenvectors may be determined analytically
�40,47�. Now consider the effect of an integrability-breaking
perturbation H�, so that the total Hamiltonian becomes

H = H0 + �H�, � � R+. �3�

For sufficiently small values of the parameter �, the eigen-
values and eigenvectors of H are adequately described by
perturbation theory. As � increases to the point where the
interaction strength between states that are directly coupled
by H� is equal to their unperturbed energy difference �7,8�,
perturbation theory breaks down, and a crossover from a
Poisson to a Wigner-Dyson distribution occurs. In parallel
with such a crossover in energy level statistics, the eigenvec-
tors of H become increasingly delocalized across the eigen-

BROWN et al. PHYSICAL REVIEW E 77, 021106 �2008�

021106-2



states of H0. As � increases further, delocalization typically
continues until the component distribution of the eigenvec-
tors becomes that of GOE random states. The exact relation-
ship between the level statistics and delocalization border
has been much studied and remains in general an open ques-
tion �7,8,48�.

In order to identify parameter ranges where chaos is
present, it is necessary to quantify how accurately the statis-
tical properties of the eigenvalues and eigenvectors of the
Hamiltonian are described by RMT. Here, we will address
this question by examining the energy level and eigenvector
statistics across the full spectrum, rather than restricting our-
selves to a specific spectral region �see also Sec. IV C for
additional quantitative discussion of this point�.

The extent to which the energy level spacing distribution
interpolates between the Poisson and Wigner-Dyson limits
may be conveniently parametrized by a so-called level sta-
tistics indicator �LSI�, introduced in �49�:

� �
�

0

so

�P�s� − PWD�s��ds

�
0

so

�PP�s� − PWD�s��ds

, �4�

where s0	0.4729 is the first intersection point of PP�s� and
PWD�s�. The LSI has the value �=1 when P�s�= PP�s�, but
�=0 if P�s�= PWD�s�.

In order to characterize the degree of eigenvector delocal-
ization, a convenient measure is the so-called number of
principal components �NPC� �2,50,51�. Given a basis 
�n�
 of
the system Hilbert space H, the NPC of a normalized pure-
state vector ��� is defined as follows:

������ � ��
n

��n����4�−1
. �5�

Thus, the NPC estimates the number of basis states relative
to which ��� has a significant component. For example, if ���
is a uniform superposition of exactly m basis states, then
������=m. For an N-dimensional state vector with a compo-
nent distribution pertaining to the GOE, the expected NPC is
given by

�GOE =
N + 2

3
,

where the factor 1/3 emerges from the Gaussian fluctuations
of the eigenstates, and the additive correction 2 is due to
normalization �4,52�. Since N is usually large, the approxi-
mation �GOE�N /3 is commonly adopted. In parallel with the
fact that the LSI as constructed takes into account the level
statistics across the full spectrum, we will be primarily inter-
ested in the average value of the NPC across all of the eigen-
vectors in a relevant subspace.

III. DISORDERED HEISENBERG MODELS

The Heisenberg model in one and two spatial dimensions
plays a paradigmatic role in condensed-matter physics and
statistical mechanics as a testbed for exploring quantum

magnetism and spin dynamics in reduced dimensionality
�53�. Thus, an accurate characterization of its integrability
properties in physical regimes of interest has both a funda-
mental and practical significance. In the special case of spin-
1/2 particles, a partial characterization of the integrability-to-
chaos transition has been achieved, based on both clean
systems where chaos is induced by coupling two different
spin chains �54� or by adding next-nearest-neighbor interac-
tions �54–56�, and on disordered systems, where the
integrability-breaking term consists of random magnetic
fields applied to all or a subset of spins �57–59�. Aside from
their relevance to model real materials, disordered systems
offer the added advantage of providing a natural arena to
study the interplay between interaction and disorder, which
remains a most challenging problem in condensed-matter
physics.

Within QIS, the isotropic Heisenberg spin-1/2 model in an
external magnetic field arises naturally in some of the most
promising solid-state proposals for scalable quantum compu-
tation, each spin corresponding, in the simplest settings, to a
logical qubit, and the exchange interaction providing the re-
quired interqubit coupling. Following the original suggestion
by Loss and DiVincenzo �28� for coupling electron-spin qu-
bits via tunable Heisenberg interactions in semiconductor
quantum dots, schemes for effecting exchange-based univer-
sal quantum computation have been further developed for
both electron �60� and donor-atom nuclear spins �30�, con-
structive methods for universal quantum gate design and ef-
ficient readout being identified in �61�. In addition, scalable
universal architectures where always-on Heisenberg cou-
plings are used in conjunction with appropriate encodings of
a logical qubit into three or more physical spins have been
constructed, offering both substantial implementation flex-
ibility �29� and enhanced decoherence suppression �32,62�.

Depending on implementation details, imperfect qubit
fabrication and/or uncontrolled residual spin-spin couplings
during storage or gating may introduce an integrability-
breaking perturbation H�, causing the prerequisite mapping
to well-defined logical qubits to be lost. While a number of
error control schemes exist in principle to counteract the ef-
fects of H� �notably, dynamical refocusing methods for static
disorder as considered here; see, e.g., �63��, understanding
the error behavior due to H� remains an important prelimi-
nary step.

The Hamiltonian for an L-site lattice of spin-1/2 particles
coupled by the Heisenberg interaction and subject to a bias
field in the z direction is given by

H = �
i=1

L
�i

2
�z

�i� + �

i,j


Jij

4
�� �i� · �� �j�, �6�

where �� �i� is the vector of Pauli matrices ��x
�i� ,�y

�i� ,�z
�i�� act-

ing on the two-dimensional Hilbert space of the ith site. The
parameter �i determines the on-site Zeeman energy of the ith
spin, and will be parametrized as �i=�+	�i, where � is a
nonzero average and 	�i are uniformly distributed within
�−	� /2,	� /2�, characterizing the different strengths of local
random magnetic fields. The interaction strength between
spins i and j is given by Jij, which will be likewise param-
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etrized as Jij =J+	Jij, where J is the average coupling and
	Jij represents random interactions, being uniformly distrib-
uted in �−	J /2,	J /2� �64�. Since we are interested in the
whole spectrum, the sign of the exchange coupling parameter
J is irrelevant. In the numerical simulations, we shall assume
J
0. The set of interacting pairs 
i , j
 is determined by the
topology of the lattice. We shall consider nearest-neighbor
interactions on a 1D chain and on a 2D rectangular lattice. In
addition, the following notation is introduced:

HZ = �
i=1

L
�i

2
�z

�i�, �7�

HJ =
J

4 �
i=1

L−1

�� �i� · �� �i+1�. �8�

As discussed in Sec. IV, these two terms correspond to inte-
grable limits of the Hamiltonian given in Eq. �6�.

A. Two-body random ensemble

It is important to appreciate that the class of systems con-
sidered here �Eq. �6�� is more accurately described by the
two-body random ensemble �TBRE�, which, instead of
L-body couplings as implicit in the GOE, involves only two-
body interactions. The TBRE, and more broadly the embed-
ded Gaussian ensembles with k-body interactions �k�L�,
was introduced in �65,66� as a physically more realistic sta-
tistical setting for describing few-body interacting systems,
such as atoms, molecules, and nuclei. Among the differences
between the two ensembles �67–69�, we highlight the ones
that are most directly relevant to this work.

�1� The GOE local density of states �also called the LDOS
profile; see, e.g., �7,50�� as a function of energy shows a
semicircular law, whereas it is Gaussian for the TBRE.

�2� The TBRE lacks ergodicity, in the sense that the sta-
tistical properties of each ensemble member need not coin-
cide with the ensemble average �70�.

�3� In contrast to the energy-independent NPC value pre-
dicted by the GOE, the NPC estimate for the TBRE shows a
strong variation with the energy of the state, approaching the
GOE prediction of N /3 mostly in the middle of the energy
spectrum.

B. Relevant symmetries

Although integrability may be regarded as equivalent to
the presence of a complete set of symmetries of the defining
Hamiltonian �71�, if such a set is incomplete then chaos may
still be present within distinct symmetry sectors. However, a
Wigner-Dyson distribution occurring independently in differ-
ent sectors will tend to be washed out if the corresponding
energy levels are mixed together. Thus, in order for clear
conclusions to be drawn based on the energy level statistics,
it is necessary to desymmetrize the spectrum according to its
trivial symmetries, that is, the level spacing distribution must
be examined separately in each resulting symmetry sector.
The symmetries of the Hamiltonian in Eq. �6� are determined
by the choice of model parameters �i and Jij:

�1� Rotational symmetry around the z axis. For all values
of �i and Jij, the z component of the total spin, Sz=�i�z

�i� /2,
is a conserved quantum number, that is, �Sz ,H�=0. For even
L, the largest subspace corresponds to Sz=0, having dimen-
sion N0= � L

L/2 �=L ! / ��L /2�!�2. We shall focus primarily on
this subspace, H0, as chaos sets in here first. A natural basis
for H0 is the one associated with the eigenstates of HZ,
which will be referred to as the computational basis or sim-
ply c basis.

�2� Conservation of total spin. When the on-site energies
are degenerate, �i=�, the total spin S2= ��i��

�i� /2�2 also be-
comes a good quantum number, �S2 ,H�=0. Therefore, in this
parameter regime the system must be separately studied in
each symmetry sector characterized by fixed quantum num-
bers Sz and S �72�.

�3� Symmetries due to lattice geometry. For �i=� and Jij
=J, symmetries under site permutations related to the geom-
etry of the lattice must also be considered. Under periodic
boundary conditions, H is invariant under cyclic translations
and reflections of the lattice sites, resulting in momentum
and parity conservation, respectively. Note that, in rectangu-
lar 2D lattices, momentum and parity in both directions are
good quantum numbers. For open boundary conditions, the
Hamiltonian is invariant under lattice reflections only. We
shall restrict our analysis to open boundary conditions in
what follows, because they lead to fewer symmetries and
hence larger invariant subspaces, which permit better eigen-
value statistics. Therefore, when identifying invariant sub-
spaces, the eigenstates will be grouped according to their
quantum numbers �Sz ,S ,R�, where R indicates parity.

�4� Time-reversal invariance. The GOE is the ensemble
appropriate for describing the static properties of systems
exhibiting time-reversal invariance, that is, for Hamiltonians
that commute with the time-reversal operator T0= �i�L

� j=1
L �y

�j�K, where K is the conjugation operator in the c basis
for spin 1/2. It is important to note that the Heisenberg model
with a magnetic field does not commute with the conven-
tional time-reversal operator T0. Nevertheless, the GOE
rather than the more general Gaussian unitary ensemble is
appropriate for this model because the Hamiltonian matrix
admits a straightforward real representation in the c basis.
Equivalently, one may understand the applicability of the
GOE as resulting from the fact that the Hamiltonian is in-
variant under K which may be regarded as a nonstandard
time-reversal operator as in �41,57�.

Although, as mentioned, for a fully established �or weakly
broken� symmetry one may examine the level statistics in
each invariant subspace, for strongly broken symmetry it is
no longer possible to sort eigenvalues by symmetry quantum
numbers, nor can correlations between different subspaces be
ignored. As a result, separating the effect of symmetries on
the energy level spacing distribution from that of integrabil-
ity vs chaos becomes challenging throughout the symmetry
transition regime, that is, it is difficult to distinguish system-
atically between the emergence of a complete vs incomplete
set of symmetries. While some analytical results exist for
eigenvalue statistics across the full space in the presence of
symmetry breaking �73,74�, they do not offer a practical di-
agnostic tool for distinguishing between fully chaotic and

BROWN et al. PHYSICAL REVIEW E 77, 021106 �2008�

021106-4



partly integrable behavior in broken-symmetry regimes
based on the LSI �especially when multiple symmetry sub-
spaces are involved as in the S2-symmetry breaking which
plays a relevant role here�.

C. Related models

The Heisenberg model may be regarded as one of a re-
lated class of spin-1/2 lattice models with two-body interac-
tion Hamiltonians of the form

HXYZ = �
i

�i�z
i + �


i,j

�Jij

x �x
�i��x

�j� + Jij
y �y

�i��y
�j� + Jij

z �z
�i��z

�j�� .

In particular, the 2D Ising model in a transverse field �Jij
z

=Jij
y =0�, as well as the XXZ model �Jij

x =Jij
y ,Jij

z �0� and the
isotropic XY model �Jij

x =Jij
y ,Jij

z =0�, have been previously
studied in the context of quantum computation and quantum
chaos �7,8,25,26,75,76�. However, the Heisenberg model dif-
fers in some essential characteristics, notably the nontrivial
role of symmetries. Also distinctive in the Heisenberg ex-
change coupling is the competing nature of the two interact-
ing terms in the Hamiltonian: in the c basis, the diagonal
Ising interaction �z

�i��z
�j� favors localization, whereas the flip-

flop term �x
�i��x

�j�+�y
�i��y

�j� induces delocalization. Thus, a
comparison between our results and those of previous studies
will also serve to identify those properties that are generic to
disordered spin-1/2 lattices as contrasted to those specific to
the Heisenberg model.

IV. RESULTS: LEVEL STATISTICS AND
DELOCALIZATION PROPERTIES

We shall proceed by first obtaining a basic characteriza-
tion of the level spacing distribution and average delocaliza-
tion properties of the eigenvectors for a wide range of pa-
rameters of interest, and then proceed to examining
entanglement properties in Sec. VI.

A. From integrability to chaos

The model described by Eq. �6� shows two limiting inte-
grable cases HZ and HJ �Eqs. �7� and �8�, respectively�. The
first is a trivially solvable noninteracting problem, while the
second is solvable only in 1D by the Bethe ansatz �77–80�. A
transition to chaos may be induced by adding an
integrability-breaking term to any of the two integrable lim-
its. Here, we shall focus on the following representative sce-
narios.

Case J /	�. Exchange interactions with a constant strength
J are added to H0=HZ. The crossover between integrability
and chaos is studied as a function of the ratio J /	�, with
	J=0 throughout.

Case 	J /J. Exchange interactions with random strength
are added to H0=HJ. The crossover between integrability
and chaos is analyzed as a function of the ratio 	J /J, with
	�=0 throughout.

Case 	J /	�. Exchange interactions with random strength
are added to H0=HZ. The crossover between integrability
and chaos is studied as a function of the ration 	J /	�.

Clearly, case J /	� includes the other two cases in limiting
situations: Specifically, it coincides with case 	J /	� when
the on-site disorder dominates over the disorder in the cou-
pling strengths, 	�→�, and with case J /	� when the distri-
bution of coupling strengths is very narrow, J→�.

B. Delocalization measures

Because the properties of a state vector �in particular, de-
localization� depend entirely on the choice of representation,
quantities such as the NPC cannot serve as intrinsic �basis-
independent� indicators of quantum chaos, such as energy
level statistics are considered to be. This fact may undermine
the entire program of establishing connections between the
properties of the eigenvectors of a Hamiltonian and its level
of chaoticity. Yet it is well known that, for chaotic Hamilto-
nians, RMT predictions hold �to some extent� in a large num-
ber of reasonable representations, although a systematic
characterization of such representations and the degree of
agreement one may expect remain at present unanswered
questions. Here, we conform to the standard approach to this
problem, and examine eigenvector properties with respect to
a basis in which the spread of the eigenvectors has a physical
meaning, for instance one which relates to the relevant mea-
surement capabilities, or to an integrable limit of the class of
Hamiltonians under consideration. On one hand, we shall
investigate to what extent the eigenvector properties associ-
ated with quantum chaos depend on the choice of two differ-
ent bases corresponding to the integrable limits �7� and �8�.
On the other hand, we shall introduce a measure of relative
delocalization between bases associated with different disor-
der realizations. Specifically, we will examine the following.

�i� The above-mentioned c basis, which is associated with
the eigenstates of HZ. In quantum computation, this is the
basis that represents classical information, relative to which
the final readout measurement is performed �5�. The associ-
ated NPC will be labeled �c.

�ii� A so-called J basis, or interaction basis, which corre-
sponds to the eigenbasis of HJ. In this case, the associated
NPC will be denoted by �J.

�iii� A disorder-dependent relative representation, which is
obtained as follows. Within a set of sequentially generated
random realizations, the eigenbasis of a given random real-
ization is used to calculate the NPC for the eigenvectors of
the subsequent realization. The associated NPC, which will
be denoted �r, quantifies relative delocalization, that is, how
delocalized are the eigenbases associated with different dis-
order realizations with respect to each other, rather than with
respect to some fixed basis. By construction, this quantity is
independent of any fixed basis and depends only on the dis-
order.

Interestingly, an approach that attempts to quantify the
complexity of the eigenstates of an ensemble of Hamilto-
nians in a way similar to the above-mentioned relative delo-
calization has been proposed based on the notion of correla-
tional entropy �81�. Both correlational entropy and relative
delocalization overcome the problem of basis dependence by
invoking a distribution over Hamiltonians. An important dif-
ference, however, is that evaluating the correlational entropy
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requires tracking individual eigenstates as a function of the
disorder across the full disorder space. While a further com-
parison between the two concepts would be worth pursuing,
it is likely that this feature could make relative delocalization
computationally more tractable for many disorder settings.

C. Numerical results

We consider the Sz=0 subspace H0 for 1D and 2D mod-
els. In both cases, for lattice size L=12, dim�H0�=N0=924.
As anticipated in Sec. II, NPC values are averaged over all
eigenstates in H0, and both the LSI and NPC are further
averaged over a number of disorder realizations sufficient for
accurate statistics, as indicated in each figure caption.

Case J /	�. For this disorder setting, two integrability-
chaos transitions are verified for the 1D model, whereas only
one occurs in 2D. From the top panels of Fig. 1, we see that
in both cases the first crossover, from the HZ integrable limit
to chaos, is observed as the interaction strength J increases
from zero to a value close to the energy difference between
directly coupled states, J /	��1. In the other extreme, where
J /	�→� and therefore H→HJ, the transition to S2 and R
symmetry complicates the interpretation of the energy level
statistics. During this transition, different �S ,R� invariant
subspaces partially overlap, and the observed LSI increase
across the whole Sz=0 subspace need not reflect a change
toward integrability, but rather the progressive decoupling of
states belonging to different subspaces �this region is indi-
cated by a dashed line in the figure�. Once the transition is
complete, at J /	�→�, the level spacing distribution within
individual �Sz ,S ,R� symmetry sectors may be determined.

This results in a Poisson distribution for the 1D model �82�,
consistent with its exact solvability. However, and contrary
to the behavior of the LSI across the whole H0, the level
spacing distribution in the invariant subspaces of the 2D sys-
tem is strongly Wigner-Dyson.

It is interesting to contrast the LSI results with those for
the NPC. The dependence of �c, �J, and �r on J /	� is illus-
trated in the bottom panels of Fig. 1. Corresponding to the
broader chaotic region detected by the LSI, there is greater
delocalization in 2D, especially as quantified by �J and �r.
For both cases, the maximum NPC in most instances occurs
within the chaotic region, which we take to be �
0.3 �7�.
However, the actual value falls short of the RMT prediction
and different NPC measures may disagree substantially even
within the chaotic region. For example, at J /	�	2 where �c
reaches its maximum, �J and �r show only partial delocaliza-
tion. �c and �J detect only one localized-to-delocalized tran-
sition, whereas �r is only large where the LSI is low. Note
that the behavior of �r matches more closely the behavior of
the LSI on the transition in LSI occurring at low values of
J /	� than �c. However, in the limit J /	�→�, �r fails to
discriminate between the integrability of the 1D model and
the presence of chaos in the 2D model, decreasing to 1 in
both cases due to the absence of disorder.

Case 	J /J. In this case, �S2 ,H�=0, thus we examine the
LSI and NPC in the largest S2 subspace, corresponding to
S=1 and dimension N=297 eigenstates. As 	J /J→0 �H
→HJ�, the reflection symmetry becomes important, causing
the LSI in the top panels of Fig. 2 to increase irrespective of
the chaoticity or integrability of the Hamiltonian. As previ-
ously discussed, in this limit the 1D model is integrable,
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while the 2D model is not. Consequently, as 	J /J increases
from 0, a transition from integrability to chaos occurs for the
1D model, whereas only the breaking of the reflection sym-
metries occurs in the 2D model. Notably, for the 1D model
near 	J /J=2, an unexpected rapid transition in the LSI from
��0.2 to an intermediate value of ��0.6 is observed. Al-
though the 2D system remains chaotic throughout, a small
rise in LSI close to 	J /J�2 is noticeable.

The NPC values are shown in the bottom panels of Fig. 2.
Since the Hamiltonians in the J basis and in any basis asso-
ciated with a disorder realization are block diagonal, �J and
�r cannot exceed the dimension of the �Sz ,S�= �0,1� sub-
space, unlike �c, which is upper-bounded only by the dimen-
sion of the Sz=0 subspace, given that states of the c basis do
not posses S2 symmetry. For the 1D model, the slight in-
crease in �c as 	J /J→1 occurs during the integrability-chaos
transition, but the same occurs also for the 2D system, which
is chaotic throughout. Thus, this increase is likely related to
the reflection-symmetry breaking. Interestingly, the abrupt
drop in �c for both 1D and 2D near 	J /J=2 appears to be
connected with the rise in the LSI—the greater change in
both LSI and �c occurring for the 1D model.

A possible explanation for the observed transition at
	J /J�2 is based on the fact that this value marks the point
where interaction strengths arbitrarily close to zero are al-
lowed, minij
Jij
=J−	J /2=0. If the chain is broken into two
or more approximately uncoupled segments, then the energy
spectrum of each segment becomes approximately indepen-
dent. Even if for each segment the level spacing distribution
is Wigner-Dyson, the level spacing distribution for the com-
bined spectrum will not be. Lending support to this explana-
tion is the far stronger effect in 1D than in 2D, following
from the fact that the 2D lattice cannot be as easily broken
into isolated segments. In order to determine if this effect is
an artifact of the sharp cutoff in the disorder distribution,
interactions with Gaussian disorder �with standard deviation
�=	J /4� were also examined. The results are shown as the
dotted line in Fig. 2 �top left�, where it is seen that the abrupt
transition remains despite the absence of a sharp cutoff in the
disorder range �note, however, that the width of the transition
is affected�.

It is intriguing to notice that in 1D the ground-state and
low-energy excitations for this disorder setting have been
determined at 	J /J=2 through an exact renormalization
group approach, and are known to be described by the ran-
dom singlet phase �83–85�. A more thorough discussion of
possible connections between the observed behavior and the
existence of a random singlet phase are left for future inves-
tigation.

As a further remark, the behavior of �r in the region
where 	J /J�2 is worth mentioning. In 1D, �r is much lower
than �J, while in 2D only a small difference is seen. This
further demonstrates that, in the presence of disorder, relative
delocalization can be an effective indicator of chaos.

Case 	J /	�. The dependence of the LSI on 	J /	� is
shown in the top panels of Fig. 3. As the disorder in the
coupling strengths becomes sufficiently large to compete
with the energy difference 	�, a transition from integrability
to fully developed chaos is observed only for the 2D model,
whereas in 1D the LSI merely approaches an intermediate

value of ��0.6 �86�. For 	J /	��10, the LSI for the entire
Sz=0 subspace increases, but, as before, this does not neces-
sarily reflect an approach to integrability, since a transition to
the S2 symmetry is in place. In fact, at 	J /	�→�, we have
verified that essentially the same LSI values reached at
	J /	��10 for 1D and 2D within the �Sz ,S�= �0,1� subspace
are attained.

The NPC behavior is depicted in the bottom panels of Fig.
3. Reflecting the fact that chaos never fully develops in 1D,
both �c and �r are considerably lower when compared to the
previous case. In contrast, for the 2D model, this disorder
setting leads to a high level of delocalization, especially in
the J basis and in terms of relative delocalization. The maxi-
mum values are reached between 1
	J /	�
6. As 	J /	�
increases further, the transition to S2-symmetry sectors be-
comes relevant, and the Hamiltonians in these two represen-
tations approach a block-diagonal form—therefore �J and �r
decrease accordingly. As 	J /	�→�, the values obtained still
indicate strong delocalization relative to the sizes of the
�0,S� subspaces.

Consistent with studies of the TBRE and of other systems
with two-body interactions �notably, nuclear-shell models�, a
strong dependence of NPC on energy is observed, particulary
in chaotic regions �see Fig. 4�. Specifically, the NPC follows
an approximately Gaussian form. We show a representative
2D case at 	J /	��3, where �J and �r are close to their
maximum. Note that RMT provides a bound on the extent of
delocalization, and that, even in the center of the spectrum,
the average delocalization falls short of the predictions of
RMT, particularly in the c basis. That the eigenstates in the
tails of the spectrum are less delocalized than those in the
center, however, only partially affects the average NPCs
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shown in Figs. 1–3, because the density of states is also
peaked around the center of the spectrum. We found that
averaging only over the central 100 eigenstates �10.6% of the
total� increases the values of each NPC measure by an
amount between 10% and 15%, and does not qualitatively
affect the behavior of the average NPC. For all cases except
for �J and �r in the case 	J /	� near their maxima, the devia-
tion from the RMT prediction of N /3 remains substantial.

This situation is to be compared with the models studied
in �7� and �26�. Even though these models also correspond to
the TBRE, better agreement with RMT is obtained for delo-
calization whenever the interactions are either purely off di-
agonal or all-to-all, that is, every site is coupled with every
other site. In fact, a key difference in our case is the presence
of the purely diagonal Ising contribution, which favors local-
ization in the computational basis. Furthermore, we have
verified that all-to-all Heisenberg couplings also yield delo-
calization values in better agreement with RMT �data not
shown�. Thus, the lower level of ergodicity in the models
examined here may be partly attributed to lower connectiv-
ity.

V. ENTANGLEMENT MEASURES

Obtaining a complete characterization of entanglement in
many-body systems is a challenging problem which in spite
of extensive effort remains as yet largely unsolved �11�. As a
main reason for such difficulty, it is evident that no single
entanglement measure can fully capture the complexity of
multiparticle correlations. For our current purposes, we shall
select representative measures of entanglement that both are
computationally practical and directly connect with prior

work on entanglement and quantum chaos and/or quantum
phase transitions. Specifically, we shall investigate so-called
concurrence between selected pairs of qubits as a measure of
pairwise correlations �87�, and a family of multipartite purity
measures constructed within the general GE framework
�36,37�.

For a pure state ��� of two qubits, concurrence may be
defined as

C����� = �����y
�1�

� �y
�2������ ,

where ���� is the complex conjugate of ���. Physically,
C����� may be thought of in this case as the overlap of a state
with its time-reversed counterpart. When a pure state ��� of
L�2 qubits is considered, the reduced two-qubit state of a
selected pair �i , j� is described by a density matrix �ij, where
all but the qubits of interest are traced out. In this case,
concurrence may be computed through a more general ex-
pression, which holds also for mixed states, and reads

C��ij� = max�0,�1 − �2 − �3 − �4� , �9�

where �1
�2
�3
�4 are the square roots of the eigenval-
ues of �ij�̃ij, and �̃ij = ��y

�1�
� �y

�2��, �ij
� ��y

�1�
� �y

�2�� �87�. Con-
currence ranges from a minimum of 0 for unentangled states
to a maximum of 1 for states containing a maximum amount
of pairwise correlations. Thus, applied to a pair of qubits in a
pure many-qubit state, zero concurrence will occur for a
product state ���= ��1� � ¯ � ��L�, but also for the L-partite
Greenberger-Horne-Zeilinger state �GHZL�= 1

�2
��0, . . . ,0�

+ �1, . . . ,1��, which exhibits genuinely multipartite correla-
tions �88�. For random states of a sufficiently large number
of qubits, the expected value of concurrence between any
two qubits is very close to zero �89�.

For a multipartite system, concurrence quantifies the
amount of mixed-state bipartite entanglement within a given
pair. Complementary information about how the pair itself,
or, more generally, a given subset A of qubits, correlates with
the remaining subset B, is provided by the amount of bipar-
tite entanglement between A and B. The unique measure sat-
isfying all requirements of invariance under local transfor-
mations, continuity, and additivity is the von Neumann
entropy of either reduced density matrix, e.g.,

S����AB� = − TrA��A log2 �A� ,

where �A is the reduced density operator of subsystem A. If
the additivity requirement is relaxed, a simpler linearized
version of the above expression suffices to quantify bipartite
entanglement, the so-called linear entropy,

E����AB� = 1 − TrA��A�2.

Although the amount of multipartite entanglement is gener-
ally hard to quantify away from bipartite states, useful indi-
rect insight may be gained by considering different biparti-
tions of the system. In particular, ��� certainly contains
genuine multipartite entanglement if no reduced subsystem
state is pure.

The notion of GE offers a powerful framework for both
organizing conventional multipartite entanglement within a
unified setting, and for extending the concept of entangle-
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ment to situations where a preferred partition of the system
into subsystems may not be meaningful or otherwise desir-
able �36–38,90�. GE is based on the relationship of the state
of interest to a distinguished set of observables, rather than to
a tensor product decomposition of the Hilbert space H into
subsystems. Let such a distinguished observable set consists
of the Hermitian operators in a linear subspace h of the full
operator space on H, with h closed under Hermitian conju-
gation. The key step is to replace the notion of the subsystem
state as obtained via the usual partial trace operation by the
notion of a “reduced state” as determined by the expectation
values of observables belonging to the restricted subspace h.
A pure state ��� is generalized unentangled �entangled� rela-
tive to h depending on whether its reduced state is pure
�mixed� in the space of all reduced states, that is, depending
on whether it is extremal �or not� in the convex sense. If 
Bi

is a basis of Hermitian traceless operators for h, orthogonal
in the trace inner product, a natural measure for GE is the
degree of purity of the reduced h state as quantified by the
h-purity,

Ph����� = ��
i

����Bi����2, �10�

where the overall normalization constant � is chosen so that
Ph ranges between its maximum value of 1 for generalized
unentangled states and its minimum value of 0 for maximal
GE relative to h.

When the observable set h is the Lie algebra of all local
observables on qubits, GE reduces to standard multipartite
qubit entanglement. In particular, the above h-purity �10�
relative to arbitrary single-qubit observables takes the ex-
plicit form

P1����� =
1

L
�

�=x,y,z

i=1,L

������
�i�����2. �11�

This quantity is simply related to the so-called Meyer-
Wallach measure of global entanglement, Q, by P1=1−Q
�38,91,92�, which quantifies multipartite entanglement
through the average bipartite entanglement between one qu-
bit and the rest. By construction, P1=1 for product states,
whereas P1=0 for states such as �GHZL�, where each single-
qubit reduced density matrix is totally mixed.

A family of related entanglement measures may be natu-
rally constructed from the above local purity by coarse grain-
ing. If the qubits are partitioned into distinct n-qubit blocks,
the n –local purity, denoted Pn, is defined as the purity with
respect to arbitrary observables local to each block. For ex-
ample, the bilocal purity �also used in �23�� is given by

P2����� =
2

3L
�

�,�=x,y,z

i=1,L/2

������
�2i−1���

�2i�����2, �12�

where the sum only extends to traceless operators. Physi-
cally, the measure Pn, for n�1, ignores short-range correla-
tions which P1 detects. For the 1D chain we consider, the
natural choice of partitions is into contiguous blocks. For the
2D lattice, relevant block partitions are illustrated in Fig. 5.

It is important to mention that the von Neumann entropy
of an n-qubit block, which has been a more broadly used
quantity in studies of entanglement vs quantum chaos
�19,20,26,27�, is closely related in meaning to Pn. It can be
shown that the average bipartite entanglement between the
n-qubit block and the rest, Qn=1− Pn, is �up to a normaliza-
tion constant� equal to the average linear entropy over each
n-qubit block participating in Pn. Thanks to the average over
many blocks, Pn is less sensitive to edge effects. Apart from
that, a main advantage with respect to von Neumann block
entropy is its mathematical simplicity, which allows analytic
calculations of the expected GE for random pure states and
also reveals a quantitative relationship with delocalization as
measured by the NPC in a local basis �93�. In particular, for
random pure states with purely real components, as expected
for GOE eigenvector statistics, the average value Pn with
respect to the appropriate Haar measure may be exactly com-
puted for arbitrary lattice size L. While we defer the details
of the derivation to the Appendix, the results for states in the
Sz=0 subspace with L=12 are summarized in Table I.

The intrinsic flexibility of the GE notion easily allows for
the construction of purity measures relative to distinguished
operator spaces not directly tied to a subsystem partition. For
spin-1/2 systems, in particular, a natural choice of distin-
guished observables emerges upon mapping Pauli spin op-
erators to canonical fermionic operators via the Jordan-
Wigner transform,

cj = �� i=1
j−1�z

�i���+
�j�, �+

�j� =
1

2
��x

�j� + i�y
�j�� .

It is straightforward to show that the 
ci
 satisfy canonical
fermionic anticommutation relations 
ci

† ,cj
=	ij, 
ci ,cj
=0.
Then “generalized local” resources may be associated with
quadratic fermionic observables commuting with the total

P2 P3

P4
P6

FIG. 5. �Color online� Choices of partitions for evaluating
n–local purities in the 3�4 lattice.

TABLE I. Expected n–local purity for random states in the Sz

=0 subspace of an �L=12�-site lattice, N0=924. Values are multi-
plied by a factor of 103 for clarity.

P1 P2 P3 P4 P6

2.16 5.69 7.71 7.49 10.10
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fermionic number operator, L̂=�ici
†ci—as opposed to “non-

local” resources involved in processes where the total fer-
mion number in a given pure state may change. The corre-
sponding distinguished observable set is isomorphic to the
unitary Lie algebra in L dimensions, h=u�L�. GE relative to
such algebra is quantified by the fermionic u�L�-purity �38�,

Pu�L������ =
2

L
�

i�j=1

L

��ci
†cj + cj

†ci�2 − �ci
†cj − cj

†ci�2�

+
4

L
�
i=1

L �ci
†ci −

1

2
�2

. �13�

Physically, Pu�L� indicates how “close” a state is to
being described by a fermionic product state �a Slater deter-
minant� �90�. For example, in the two-excitation sector,
Pu�L������=1 if and only if ��� may be written in the form
���=ca

†cb
†�vac�, where a ,b label any set of modes unitarily

related to modes i , j, and �vac� contains no fermions. Pu�L�
has been shown to successfully detect and characterize
broken-symmetry quantum phase transitions �38�. In the con-
text of the transition to quantum chaos, such a measure may
be expected to provide insight into entanglement generation
associated with the departure from a noninteracting fermion
problem.

VI. RESULTS: ENTANGLEMENT BEHAVIOR

We are now in a position to address entanglement prop-
erties of Heisenberg-model eigenvectors, and to understand
the resulting behavior based on the insight gained from the
corresponding behavior of delocalization and energy level
statistics.

A. Disorder dependence

Case J /	�. As remarked, this setting is especially useful
for exploring possible connections between integrability-
breaking, delocalization, and entanglement, because it con-
tains both the integrable limits associated with HZ �in 1D and
2D� and HJ �in 1D�. With respect to the c basis, the 1D
model possesses three regimes of interest: �i� integrability
localization for J /	�→0; �ii� chaos for intermediate ratios
J /	��1; and �iii� integrability delocalization for J /	�→�
in 1D, while in the last regime the 2D model remains
strongly nonintegrable.

Figure 6 summarizes the behavior of the average concur-
rence between all neighboring spins, C, and of the n-local
purities Pn for the 1D and 2D models. As we depart from the
purely local Hamiltonian HZ and 	J /	� increases from 0 to
1, a peak in C is observed before the onset of chaos. This
suggests that, as the system delocalizes, pairwise entangle-
ment is the first type of entanglement to emerge—
disappearing, however, in the chaotic region �25�. Such a
disconnection between pairwise entanglement and the onset
of chaos has also been verified for the 2D Ising model in a
transverse field in �26� and, more recently, �27�. Contrary to
that, each of the Pn decreases from nearly 1 to nearly 0,
roughly corresponding to the transition in the LSI and �c �cf.

Fig. 1�. Therefore, as we approach chaos, a shift from pair-
wise to genuinely multipartite entanglement occurs. Interest-
ingly, in 1D a shift from short-range to long-range correla-
tions is also noticeable, since a more pronounced decay is
witnessed by P1, which is subsequently followed by the
other purities until finally being reached by P6. In 2D, dif-
ferent Pn do not directly signify correlations over different
distance, and all Pn curves superimpose more closely.

In the region where J /	� increases from 1 to � and the
limiting Hamiltonian HJ is approached, C and P1 are near
zero throughout—note that, due to the rotational invariance
of HJ, P1→0 as J /	�→�, whereas P2, P3, P4, and P6 in-
crease slightly, particularly in 1D. It is hard to ascertain
whether this subtle variation in 1D is related to a transition to
integrability or simply associated with the symmetry transi-
tion. Therefore, the similar entanglement behavior observed
in both 1D and 2D does not mirror the differences in chaos
between the two systems. In fact, it appears much more
closely connected to the �c behavior in this region. In this
sense, a parallel between standard multipartite entanglement
and delocalization is stronger than between the former and
chaos. Furthermore, as in delocalization, the minimum val-
ues reached by each Pn in the central chaotic region, al-
though low, do not attain the values predicted by RMT. For
the 2D case, where agreement with RMT is best, the mini-
mum of each Pn except for P1 range between a factor of 4.5
and 5.8 times the RMT values in Table I. P1 does attain the
RMT value but only well into the S2-symmetry region, where
this effect cannot be attributed to chaos.

Case 	J /J. Similar to the above case J /	� in the region
J /	�
1, the entanglement behavior shows no qualitative
difference between the 1D and 2D models for 	J /J� �0,1�,
although an integrability-chaos transition occurs in 1D �see
Fig. 7�. On the other hand, both Pn and C change abruptly
near 	J /J�2 in 1D, and near 	J /J�3 in 2D. In both cases,
the sharp increase in pairwise entanglement and decrease in
multipartite entanglement are paralleled by a decrease in �c
and, more interestingly, by an increase in the LSI �cf. Fig. 2�.
It is expected that the breaking of the chain into distinct
subsystems will result in a decrease of multipartite entangle-
ment. It is, however, intriguing that, although smaller, a de-
crease occurs also in 2D, where chain breaking should be
suppressed.
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Case 	J /	�. The entanglement behavior in 2D for this
disorder setting is very similar to the one depicted in the
right panel of Fig. 6, whereas in 1D purities never reach low
values, reflecting the lack of delocalization �cf. Fig. 3�. We
shall then focus on the 2D system and describe some inter-
esting features of purity, which also apply to case J /	� in
both 1D and 2D.

B. Energy and delocalization dependence

In addition to understanding how entanglement properties
depend on disorder and interaction strength, their direct de-
pendence upon energy and delocalization is relevant to gain-
ing a more complete physical picture.

Similarly to the behavior observed for NPC within the
TBRE �see Fig. 4�, a strong correlation also exists between
multipartite entanglement and the energy spectrum. The left
panel of Fig. 8 contains a representative example for the
bilocal purity. In general, states at the edges of the spectrum
tend to be less entangled, whereas highly entangled states are
clustered around intermediate energies. This result indicates
a correspondence between Pn and the LDOS of the TBRE,
which, as a function of energy, is Gaussian and broadly
peaked at the center of the spectrum �67–69� �see also �23�
for a discussion of the influence of LDOS properties on pu-
rity behavior�. Essentially, where the LDOS is largest, a
higher level of delocalization exists and also higher amounts

of multipartite entanglement occur. We emphasize, however,
that this relationship is not per se indicative of chaos: A
similar behavior was found for disordered on-site energies
�case J /	�� within the �Sz ,S ,R�= �0,1 , +1� sector for the 1D
model in the limit J /	�→�, which corresponds to a delo-
calized, but integrable, regime.

The relationship between multipartite entanglement and
delocalization may further be probed by directly comparing
n-local purities and the NPC. A plot of the local purity P1 as
a function of delocalization in the c basis �right panel of Fig.
8� discloses a striking relationship between P1 and �c, which
is found to persist for each of the Pn and for a broad range of
values of 	J /	� within the chaotic region �until the S2 sym-
metry becomes strong�. Remarkably, for a given Pn, the pre-
cise shape of the curve does not depend on 	J /	�, although
it depends slightly on lattice dimension and disorder setting.
The precise relationship between P1 and �c is examined at
length in �93�, where it is shown that the relationship be-
tween P1 and �c depends strongly on how correlated the state
vector components are with respect to the Hamming distance
between the quantum numbers describing c-basis states �94�.
If no such Hamming correlation exists, inverse proportional-
ity between local purity and NPC is expected �see also �23��:

P1����� =
N

N − 1

1

�c�����
−

1

N − 1
	

1

�c�����
,

with N=N0=924 for the central band. While this qualita-
tively agrees with the observed behavior, due to the fact that
all interaction terms in the Hamiltonian are of a two-body
nature, the components of the eigenvectors tend to be Ham-
ming correlated, resulting in significant deviations from the
predicted inverse scaling law, especially at small �c. This
effect was recently independently confirmed by Giraud and
co-workers �95�.

In addition to calling for a deeper understanding of the
physical conditions leading to the observed nontrivial eigen-
vector structure, the above findings naturally prompt the fol-
lowing question: To what extent could the relationship be-
tween entanglement and delocalization provide a signature of
quantum chaos? As a first step toward answering this ques-
tion, we reconsider the case of a clean Heisenberg Hamil-
tonian HJ �case J /	� in the limit of no disorder�, which
supports both integrability �in 1D� and chaoticity �in 2D�.
Instead of P1, which is identically zero for eigenvectors of
H=HJ, we look at the block purity P6. As illustrated in Fig.
9, no clear relationship between �c and Pn emerges in the
integrable regime �left panel�, whereas a noticeable relation-
ship is present in the chaotic case �right panel�—in spite of
the limited statistics accessible due to symmetry constraints.
Interestingly, this is in agreement with a recent study of en-
tanglement and chaos for the Ising model in a transverse
field by Lakshminarayan and co-workers �27�, where a cor-
relation between values of delocalization and block von Neu-
mann entropy is found to occur only in chaotic regimes and
not in integrable yet delocalized ones.

While the above results provide suggestive evidence in
favor of using entanglement as a diagnostic tool for integra-
bility, independent support is needed to rule out possible bias
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FIG. 7. �Color online� Case 	J /J. Average nearest-neighbor
concurrence and n–local purity averaged over all eigenvectors of
the �Sz ,S�= �0,1� subspace vs 	J /J. Lattice size L=12. Solid black
line: concurrence. Left panel: 1D chain. Right panel: 3�4 lattice.
Averages over 20 random realizations.
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spin lattice, 	J /	�=2. Left panel: P2 vs energy eigenvalue. Right
panel: P1 vs �c. A single disorder realization is considered.
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due to the special relationship between multipartite entangle-
ment and the c basis, or to the specific entanglement measure
chosen. A natural option for circumventing such limitations
is to invoke GE. In particular, the behavior of fermionic GE
�as quantified by the Pu�L�-purity defined in Eq. �13�� as a
function of delocalization in the c basis is depicted in Fig. 10
for the same clean 1D and 2D models examined above.
Again, the observed delocalization dependence appears no-
ticeably more pronounced in the 2D chaotic case, as opposed
to the 1D integrable system. It is intriguing to think that this
behavior ultimately reflects the fact that neighboring energy
eigenstates possess common features in the chaotic regime,
as argued by Zelevinsky and co-workers �50� �see also �96��.
Although these findings reinforce the conjecture that, at least
within the TBRE, a new entanglement-based signature of
chaos may be identified in this way, validating this claim and
its physical interpretation in more generality requires a dedi-
cated investigation which we plan to present elsewhere.

VII. CONCLUSION AND OUTLOOK

We have provided a comprehensive quantitative analysis
of spectral properties, delocalization, and entanglement for
the eigenvectors of disordered spin-1/2 systems with Heisen-
berg interactions in one and two spatial dimensions. Disorder
in the system has been introduced through random applied
magnetic fields, random interactions, or both. Our main find-

ings and conclusions may be summarized as follows.
�i� Although correspondence with nonintegrability is well

documented, the interpretation of LSI data is, as expected,
nontrivial in symmetry transition regions where invariant
subspaces are partially overlapping—causing a tendency to-
ward the Poisson distribution regardless of whether integra-
bility is approached or not.

�ii� Standard NPC measures for state delocalization de-
pend entirely on which basis is chosen to represent the eigen-
vectors of the Hamiltonian; thus they need not detect the
transition from integrability to chaos if the latter is not ac-
companied by a significant change in the amount of delocal-
ization. We have examined the effect of basis choice in two
distinct bases of limiting integrable Hamiltonians as well as
introduced a measure of relative, disorder-dependent delocal-
ization which is shown to successfully detect quantum chaos
in the presence of disorder. We find that delocalization, par-
ticularly in the computational basis, does not achieve the
level predicted by RMT even in chaotic regions for the
Heisenberg model. Low connectivity and the localizing na-
ture of the Ising pairing are likely to play a role in account-
ing for such disagreement.

�iii� In delocalized systems, NPC and multipartite qubit
entanglement show a dependence on energy that resembles
the one observed for the density of states in the TBRE, re-
flecting a strong correlation among the three quantities. This
complements findings on the influence of LDOS properties
on dynamical aspects of entanglement in disordered qubit
systems �23�.

�iv� In the case where only random Heisenberg interac-
tions are present, an interesting connection between level
statistics, average eigenvector entanglement and delocaliza-
tion, and the presence of a random singlet phase was uncov-
ered in 1D. This may warrant further study, also in view of
better elucidating what mutual relationships �if any� exist
between quantum criticality and the ability of a system to
sustain quantum chaos.

�v� Delocalization and multipartite entanglement both
show a substantial increase during the transition from a lo-
calized integrable Hamiltonian to a chaotic one. Similar to
NPC measures, both entanglement and GE measures are un-
avoidably relative to a choice of “local” resources—as cap-
tured by preferred subsystems or observables. However,
comparison between two quantities sharing the same relative
origin—NPC and Pn—results in a distinctive relationship
which may serve as a quantum chaos indicator. Physically,
such a relationship suggests that both entanglement and de-
localization in a given local basis essentially capture the
same information about eigenvector structure. Both the va-
lidity and implications of this potential entanglement signa-
ture, as well as a more substantial use of genuine GE, are
points deserving additional in-depth investigation. In particu-
lar, a promising venue to explore is the possibility that GE
measures relative to appropriate observable sets may allow to
detect a transition to chaos starting from any integrable
model, irrespective of its local or nonlocal nature with re-
spect the the original operator language.

Finally, from a technical standpoint, the general method
suggested in �93� and explicitly illustrated here for comput-
ing typical entanglement properties of random pure states
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FIG. 9. �Color online� Multipartite entanglement vs delocaliza-
tion in a clean Heisenberg Hamiltonian: P6 vs �c in the �Sz ,S ,R�
= �0,1 , +1� symmetry subspace. Lattice size: L=12. Left panel: 1D
chain. Right panel: 3�4 2D lattice.
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FIG. 10. �Color online� Generalized fermionic entanglement vs
delocalization in a clean Heisenberg Hamiltonian: Pu�L� vs �c in the
�Sz ,S ,R�= �0,1 , +1� subspace. Lattice size: L=12. Left panel: 1D
chain. Right panel: 3�4 2D lattice.
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localized to a proper subspace of states in Hilbert space is
likely to find broader applications within both quantum
chaos and QIS.
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APPENDIX: TYPICAL SUBSPACE ENTANGLEMENT:
EXPECTED VALUES OF BLOCK PURITIES

Given the general expression of relative purity in Eq.
�10�, each Pn may be expressed as a sum of squared expec-
tation values over a normalized, orthonormal, traceless basis

Bi
 for the distinguished observable set h. That is,

Pn����� = ��
i

���Bi���2,

where � is a normalization factor ensuring that max���
Pn

=1. Thus, the average purity over any ensemble of states is
given by

Pn����� = ��
i

���Bi���2.

The method we shall follow to compute Pn will be based on
the following result �proved in �93��.

Let H be a finite-dimensional Hilbert space, with dimen-
sion N, and let A be any traceless real symmetric operator on
H, normalized such that tr�A2�=N. Then for an ensemble of
pure states ��� with real components taken uniformly with
respect to the Haar measure on O�N�, the following relation-
ship holds:

���A���2 =
2

N + 2
.

For random states limited to a proper subspace, S�H, ad-
ditional care must be taken because A need not be normal-
ized or traceless after projection onto S. Let N�=dim�S� and
let � denote the projector onto S. If we let �A�=�A�+�1,
where tr�A��=0 and tr�A�2�=N�, it follows that

��A��2 =
2�2

N� + 2
+ �2.

The coefficients � and � may be determined from
tr��A�� and tr���A��2�,

�2 =
tr��A��2

N�2 , �2 =
tr���A��2�

N�
−

tr��A��2

N�2 ,

respectively. Therefore, in order to calculate Pn, the trace
norm of both the projection �Bi�, and the projection

squared, ��Bi��2, of each basis operator onto S must be
determined.

Since in our case each Pn is an average over the purities
of �L /n� n-qubit subsystems, it suffices to determine the av-
erage subsystem purity of a single n-qubit subsystem. A con-
venient operator basis is provided by the set of n-qubit Pauli
operators, that is, all products of single-qubit Pauli operators
and the identity, Bi=��1

�1�
� ¯ � ��n

�n�, where �k=0, x, y, or z.
The choice of the identity �0 acting simultaneously on all
qubits is excluded. It will be useful to consider the represen-
tation of the Pauli operators as matrices expressed in the
standard c basis. The subspace S=H0 of states with total
Sz=0 angular momentum �no net magnetization� is relevant
to our study, N�=N0. The Pauli operators that have a nonva-
nishing projection into H0 are �1� those consisting of only �z
and �0 operators; and �2� those consisting of an even number
of �x and an even number of �y operators, with the remain-
ing operators being any combination of �z and �0.

First, consider case 1. Each such operator is diagonal in
the c basis, hence it remains diagonal after projection into
H0. Because the eigenvalues of each such operator are �1,
tr��Bi�� may be determined by simply counting the number
of c basis states spanning H0 that correspond with each ei-
genvalue. For a Pauli string consisting of m �z and �n−m� �0

operators, the number of c basis states with k 1’s for the
qubits acted on by the �z operators is � m

k
�� L−m

L/2−k
�. Thus,

tr��Bi�� = �
k

�− 1�k�m

k
�� L − m

L/2 − k
� .

If m is odd, then the above quantity is 0.
Next, consider case 2. Note that the effect of the operator

�x
�i� or �y

�i� acting on a c-basis state is to flip the ith qubit from
0 to 1, or 1 to 0. Thus, for a c-basis state to remain in H0
after the action of a Pauli operator, the combined number of
�x and �y operators must be even. Additionally, since every
state in the ensemble has only real components in the c basis,
those Pauli operators that have an odd number of �y have
zero expectation value for each state in the ensemble. For a
Pauli string with a total of m �x and �y operators, m 0’s and
1’s will be flipped when the operator acts on a c-basis state.
Thus, the qubits acted on must have an equal number of 1’s
as 0’s in order to remain in H0. There are � m

m/2 � possible
assignments of 0’s and 1’s for such qubits. The remaining
qubits �that is, those not acted upon by �x or �y operators�
must also have an equal number of 1’s as 0’s since the state
is in H0. There are � L−m

�L−m�/2 � possible assignments for such

qubits. Therefore, there are � m
m/2 �� L−m

�L−m�/2 � matrix elements in
such a Pauli operator. Since each matrix element is 1, it
follows that

tr���Bi��2� = � m

m/2 �� L − m

�L − m�/2 � .

Since Bi acts nontrivially on every c-basis state, there are no
diagonal elements and hence tr��Bi��=0.

In order to properly normalize purity on an n-qubit sub-
system, consider the pure c-basis state �0, . . . ,0�. Only Pauli
operators consisting of �z and �0 operators have nonvanish-
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ing expectation values for this state, and each such expecta-
tion value is 1. There are �2n−1� such operators; therefore
�=1 / �2n−1� in this case.

With the above ingredients, Pn may be calculated by de-
termining how many Pauli basis states for an n-qubit sub-
system fall into each category described above in regard to
trace norm and squared trace norm upon projection onto H0.
We consider various coarse-grained purities separately.

�1� P1. Only �z
�1� has a nonvanishing expectation value. It

has an odd number of �z operators; thus tr����z��2�=N and
tr���z��=0. Therefore,

P1 =
2

N0 + 2
.

�2� P2. The Pauli operators with nonvanishing expectation
values are �z

�1�, �z
�2�, �z

�1��z
�2�, �x

�1��x
�2�, and �y

�1��y
�2�. Thus,

P2 =
1

3� 2

N0 + 2
�3 −

�2
2

N0
2 +

4

N0
� L − 2

�L − 2�/2 �� +
�2

2

N0
2� ,

where for later purposes we let

�m = �
k=0

k=m

�− 1�k�m

k
�� L − m

L/2 − k
� .

�3� P3. There are � n
m

� Pauli operators containing m �z and
�n−m� �0 operators, and in addition there are 2�n−2�� n

2
� Pauli

operators containing two �x and �n−2� �0 and �z operators
and the same number of Pauli operators containing two �y
and �n−2� �0 and �z operators. This yields

P3 =
1

7� 2

N0 + 2
�7 −

3�2
2

N0
2 +

24

N0
� L − 2

�L − 2�/2 �� +
3�2

2

N0
2 � .

�4� P4. All of the classes of Pauli operators listed for P3
must be considered for P4 also, with the following additional
classes: the 2n−4� n

2,2,n−4
� Pauli operators with exactly two �x

and two �y operators; the 2n−4� n
4

� Pauli operators with ex-
actly four �x operators; and the 2n−4� n

4
� Pauli operators with

exactly four �y operators. This yields

P4 =
1

15� 2

N0 + 2
�15 −

6�2
2

N0
2 −

�4
2

N0
2 +

48

N0
� L − 2

�L − 2�/2 �
+

8

N0
� L − 4

�L − 4�/2 �� +
6�2

2

N0
2 +

�4
2

N0
2� .

�5� P6. The additional classes of Pauli operators to con-
tribute to P6 are the 2n−6� n

4,2,n−6
� Pauli operators with exactly

four �x and two �y operators; the 2n−6� n
2,4,n−6

� Pauli operators
with exactly two �x and four �y operators; the 2n−6� n

6
� Pauli

operators with exactly six �x operators; and the 2n−6� n
6

� Pauli
operators with exactly six �y operators. This yields

P6 =
1

63� 2

N0 + 2
�63 −

15�2
2

N0
2 −

15�4
2

N0
2 −

�6
2

N0
2 +

480

N0
� L − 2

�L − 2�/2 �
+

480

N0
� L − 4

�L − 4�/2 � +
32

N0
� L − 6

�L − 6�/2 ��
+

15�2
2

N0
2 +

15�4
2

N0
2 +

�6
2

N0
2� .

Letting L=12, N0=924 in the above formulas leads to the
n–local purity values quoted in Table I.
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